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Optimization of the three-point bend test 
for fracture energy measurement 
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Of the various methods for measuring the fracture energy of a material, the three-point 
slow bend test has the merit of being simple and straightforward to execute. It can only 
be expected to give valid results, however, when the crack propagates quasi-statically. 
A simple criterion is proposed to determine whether a specimen of given geometry and 
meterial will fracture in a stable or unstable manner when tested in a particular machine. 
The prediction of the criterion is compared with experimental results obtained on a 
variety of rocks, and is found to give good agreement. 

1. Introduction 
The fracture energy of a material may be obtained 
either by measuring stresses or loads during 
fracture, or by measuring the consumption of 
energy by the growing crack. These two approaches 
may be again subdivided according to whether 
they are applied to the initiation of crack growth, 
or to the steady state. In principle, any specimen 
geometry may be used, provided that either the 
stress-intensity factor, K, or the strain energy re- 
lease rate can be determined, and provided that 
the conditions of crack growth correspond to 
those of interest for the ulterior use of  the infor- 
mation. 

in practice, most of the methods based on the 
measurement of stresses or loads are applied to the 
initiation of crack growth, whereas the energy 
methods are more often concerned with its propa- 
gation, in general, the former are of more interest 
to the designer concerned with the load-carrying 
ability of a structure, for once a crack has begun 
to propagate, the structure is never again as strong, 
and it can be considered to have failed. Measure- 
ments of the steady-state fracture energy, on the 
other hand, are of use when making estimates of 
the energy required to complete the fracture. Such 
values are useful, for example, in estimating the 
energy-absorbing ability of a structure loaded 
under crash conditions or, in the case of  our 
laboratory, in estimating the energy requirement 

for a machine to excavate a certain quantity of 
rock. 

Within the group of energy methods, there are 
both dynamic and static techniques. The former 
include the Charpy and Izod tests, which, while 
they have been successfully applied to ceramics 
and other brittle materials [1], must be treated 
with some caution; Marshall et al. [2]. have 
pointed out that the kinetic energy imparted to 
the broken pieces of the specimen is comparable 
with the fracture energy of many ceramics, and 
it must be accurately measured and deducted in 
calculating the fracture energy. 

in the quasi-static regime, the slow bend test is 
pre-eminent (and is the main subject of this 
report). This test was developed independently by 
Tattersall and Tappin [3, 4] and Nakayama [5]. 
The technique consists of taking a notched beam 
and breaking it in three- or four-point bending. If  
the test is correctly arranged, the fracture can be 
started and propagated to failure in a quasi-static 
manner, with the applied load always equal to 
that necessary to just maintain growth of the 
crack. Since, at the beginning and at the end of 
the test, the loads are everywhere zero, the integral 
of the force-displacement curve of the test 
machine between these two conditions must be 
equal the energy consumed in producing the new 
fracture surfaces. A particular advantage of this 
and other energy methods arises since one obtains 

�9 1977 Chapman and Hall Ltd. Printed in Great Britain. 277 



P 

I ,t 

Figure 1 The three-point beam test. 

an average value of  the fracture energy for the 
whole cross-section o f  the specimen. This is 
particularly useful in dealing with a material as 
variable as rock. 

The success of  the method depends upon 
always having a quantity of  stored elastic energy 
in the beam and loading system which is less than 
that necessary to complete the fracture. In 
practice, this amounts to ensuring that the loading 
system is sufficiently stiff, and to providing a 
suitable starting notch which causes the crack to 
start growth at a sufficiently small load. 

2. The present approach 
We have examined the energy balance in the 
machine and specimen at the onset of  fracture, in 
order to determine the various parameters which 
govern the stability of  the fracture process. 

We consider a rectangular beam, loaded in 
three-point bending, and shall examine the energy 
balance in the beam at the moment of  incipient 
fracture (Fig. 1). This is taken to be the moment 
at which the applied load reaches a maximum, and 
so, therefore, does the stored elastic energy in the 
system. If  this energy is less than that necessary to 
generate the new surfaces when the beam breaks, 
the fracture will be considered to be stable. 

The stored elastic energy in the beam is: 

f Gmax 
QB = Pd (d) 

g=0  

where P is the load applied by the testing machine, 
d is the beam centre point deflection, and a is the 
fibre tensile stress in the beam at the point of  
incipient failure. If the beam is considered to be 
long and thin*, 

~ emax 4Eb t  3 
QB = l---g-- d (d) (1) 

G=0 

where E is the Young's modulus, and b, t and l are 
the beam dimensions. At incipient fracture, o 
reaches ama~, the modulus o f  rupture. In an un- 
notched beam, this is related to the failure load by 
the expression 

3Pl 
Omax 2bt  2 " 

If the beam is notched, failure will occur at a 
lower load, due to the stress concentration intro- 
duced by the notch. The stress-concentration 
factor, S, can be calculated analytically for certain 
geometries of  beam and notch (see, for example, 
[6] and [7] ). Alternatively, it can be obtained by 
simply making a test on a beam of the desired 
shape: it is not necessary that the fracture be 
stable since all that is required is the failure load. 

At the maximum load, then, 

2bt  2 Gma x 
Pmax - 

3lS 

and 

d = - -  
13 2bt2 Omax 

4Eb t  3 3lS 

Equation 1 thus becomes: 
2 O_ma X 

2Ebt3d  ] 6EtS 

QB = [ 13 Ja=0 

l 02maxlbt 
18 ES 2 (2) 

The stored energy in the testing machine at the 
moment of  failure may be found similarly: 

*This expression ignores the contribution to the stored elastic energy from the shear deformation and also the decrease 
in the stiffness of the beam caused by the presence of the notch. The former will be small if the beam is long, and the 
latter will be small if the notch itself is narrow. In this simplified treatment we have chosen to adopt a phenomeno- 
logical approach, and to include this contribution implicitly in the factor S. Alternatively, for certain geometries, t h e  
stored energy in the beam can be calculated completely, and a stability criterion can also be obtained from this starting 
point [ 11]. 
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Figure 2 The variation of  stored energy per unit area of  fracture surface as a function of beam length; (1) beam energy, 

(2) energy stored in the machine, (3) total energy. 

~ " P m a x  

Qm = Pdx 
P=0 

where x is the elastic deflection of the testing 
machine. If the machine stiffness is defined as Sin, 
we have Sm = P/x and dx = dP/Sm. Thus 

Now 

f Pmax P dP 
Qm = 

J P=O Sm 

2bt 2 Ornax 
Praax 

31S 

SO 2 bt 20max 
p2 3~s 

Qm = 
P=0 

2 2 

- 2S \ 31S ] (3) 

For stable fracture to occur, the sum of the stored 
energies QB and Qm should be less than the energy 
required to form the crack which causes the 
fracture of  the beam. 

For stability, 

GA >~ Qm + Q~ (4) 

where A is the area to be broken (A is the area 
over which the crack front passes, creating two 

new surfaces, each of area A. This convention re- 
quires that G be the analogue of 27, as is usual). In 
the particular geometry under consideration, with 
the notch cut so as to leave a bridge in the form of 
an isosceles triangle, the bridge area is bt/2. 
Criterion 4 thus becomes: 

O~ax ( /  4bt3~ 

G  -9U +Sin121 (s) 
The physical significance of the criterion can be 

easily appreciated by reference to Fig. 2, in which 
the contributions to the stored energy by the two 
terms on the right-hand side of Equation 5 are 
shown as a function of beam length. The first term 
(curve 1) is proportional to l, and represents the 
energy stored in the beam. The second term (curve 
2), inversely proportional to 12, represents the 
energy stored in the testing machine. The sum of 
these two terms (curve 3) must be less than G to 
ensure stable fracture. This is seen to occur 
between ll and 12, and, in general, stable fractures 
will be found for beam lengths between two such 
limits. For very short beams, the failure load is 
high, and this causes too much energy to be stored 
in the testing machine, although the energy stored 
in the beam is small. Conversely, for very Iong 
beams, although the failure load is now low, the 
beam is so flexible that it stores enough energy in 
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its own elastic deformation to ensure an unstable 
fracture. It is of course possible that for very 
brittle materials, the minimum value of the stored 
energy from both sources is never sufficiently low 
to be below G, and for stable fractures to be pro- 
duced. This value can be conveniently found 
from Equation 5, by differentiating with respect 
to l, and equating to zero. Whence 

(8_bt3E~ ~,3 
'~ = / 

and re.substituting in Equation 5 the minimum 
value of G for which stable fracture can be ob- 
tained is found as: 

amin O2max [{gbt3~ 1/3 [ b '~131 
- -  9 8 2  [~E2Sm] +kS~)  l .(6) 

To obtain stable fractures with materials more 
brittle than this, it is necessary to alter other 
variables, e.g. by increasing the severity of the 
notch, or by increasing the stiffness of the testing 
machine. 

Equation 6 can be conveniently cast in the 
form of three dimensionless groups: stability is 
obtained when: 

p213 p2 

4EGb2t - - - - - - ~  +Sm Gb~ ~< 1 (A) 

or when 

or when 

GbtSm 13 Sm /> 1 (B) 
p2 4Ebt 3 

4 GEb 2 t 4 4Ebt 3 
/> 1. (c) 

p2la Sm 13 

Use of these forms should thus enable an evalu- 
ation of the stability criterion to be made, inde- 
pendent of machine and material variations. The 
following parts of this report, covering the ex- 
perimental work, are largely concerned with this 
evaluation. 

3. Experimental work 
The work described below covers the experiments 
necessary for testing of the stability criterion 
developed above, the investigation of possible 
scaling effects, and the measurement of fracture 
energies for a variety of rocks. They will be des- 
cribed here in the above order, although in fact 
this was not the order in which the experiments 
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were performed. For example, before proceeding 
to the testing of the theory, it was necessary to 
investigate possible size effects in order to deter- 
mine a convenient size of test specimen which 
would be unaffected by this variable. This was 
suspected, since Hoagtand et al. [8, 9] have shown 
that there is considerable evidence that the crack 
must run up to several millimetres before the 
distribution of microcracks in the region of the 
crack tip has reached an equilibrium state. 

Experiments were carried out on the following 
rocks: marble, from Carrara, Italy, and Lasa, 
Switzerland; granite from Bohus, Sweden, and 
Mi~ville, Switzerland; sandstone (grey flysch 
types) from Alpnach and Val d'Illiez, both 
Switzerland, and the well-knowm compact, litho- 
graphic quality limestone from Solnhofen 
(Germany). This choice is representative of a wide 
variety of rock types, in origin (igneous, meta- 
morphic and sedimentary), in chemical com- 
position, and in grain size. 

3.1. The stabi l i ty criterion 
Testing was carried out on an Instron 10000kg 
testing machine (Model 1215), in three-point 
bend, on notched rectangular beams of various 
dimensions. The notches were cut with a diamond 
saw, and were 1.5mm wide, with a 1 mm root 
radius. The notch form was of the triangular 
bridge type removing half the cross-section for 
most experiments, notable exceptions being the 
experiments described in Section 3.1.2. (variations 
in notch geometry). Unless otherwise stated, all 
tests were carried out on laboratory dried material, 
in air, at room temperature and at a cross-head 
displacement rate of 0 .5mmmin -a. The appear- 
ance of typical machine curves for stable, inter- 
mediate and unstable fracture are shown in Fig. 3. 
The decision as to whether a failure under con- 
ditions approaching instability was, in fact, still 
stable or not was a subjective one, based generally 
upon whether a break in the smooth curvature of 
the machine trace could be detected visually. The 
most usual place for this to be found was after the 
point of inflection following failure (see Fig. 3). 
In all cases, however, tests in which the complete 
stability of the fracture was in doubt were not 
included in the results used for obtaining the 
"mean value of fracture energy" for the particular 
rock, although they were retained for other 
purposes (e.g. in establishing close limits to the 
stability boundary). 



L O A D  

kg 

1 0 0  

50  

I =60  mm 

1=70 / 

ST  ,G T NOTe. / / 

I - ' 120  

1=140 

�9 1=160  

C R O S S - H E A D  D I S P L A C E M E N T  l c r n =  0 ,05  mm 

Figure 3 Machine curves showing the transition from stable to unstable fracture. 
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Figure 4 Energy consumed during the test showing the transition from unstable to stable fracture. 
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Figure 6 The effects of varyin~ notch geometry. 
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Figure 7 Results for Mi~ville granite. 

The effect of proximity to the boundary is 
shown in Fig. 4, where the "apparent fracture 
energy", taken as the area under the failure curve, 
is plotted against specimen length for specimens of 
Lasa marble of three different cross-sectional 
areas. For short specimens, up to nearly five times 
the energy necessary to produce the fracture was 
stored elastically before failure, and so under these 
conditions, the fracture was necessarily unstable. 
As the specimen length was increased, however, 
the stored elastic energy decreased until, in the 
region where the stored energy per unit area of 
potential fracture surface was near 100Jm -2, 
stable fractures began to occur. For still greater 
specimen lengths, under conditions of stable 
fracture, the apparent fracture energy remained 
constant within the limits of variability normally 
found with this material. These values were then 
taken to be measures of  the true fracture energy. 

The validity of  the stability criterion was 
examined by performing experiments in which 
systematic variations were made in the cross- 
sectional area, the length, the severity of the 
notch, and the type of rock. The fracture was 
observed to be stable or unstable, and was com- 
pared with the prediction of the stability criterion. 
The results are presented graphically, in terms of 
plots o f  P~ l 3 /4EGb 2 t 4 against p2 IS m Gbt  (dimen- 

sionless groups A), and the criterion is shown as a 
curved line separating stable (lower left) from 
unstable (upper right) conditions (see Figs. 5 to 10). 

At an early stage in the evaluation of the 
results, apparent disagreements were found be- 
tween theory and experiment. It was soon 
realized, however, that this was due to a non- 
linearity in the elastic response of the testing 
machine, causing the apparent machine stiffness to 
increase from 1.35 x 106 kgm -1 at 10kg load to 
3.7 x 106 kgm -1 at 500kg load (Fig. 11). When 
the value of Sm was chosen appropriate to the 
failure load of the specimen under test, however, 
these discrepancies were eliminated. 

3. 1.1. Variation of  specimen dimensions 
Fig. 5 shows results on three series of nine speci- 
mens of Lasa marble, of cross-sectional dimensions 
4 8 m m x 3 6 m m ,  3 6 m m x 2 5 m m  and 2 5 m m x  
18 mm, the breadth always being greater than the 
thickness. In each series, the nine lengths were 
400, 190, 150, 120, 90, 60, 50, 40 and 30mm. 

When the results are reduced to the two dimen- 
sionless groups and plotted as described above, 
they fall into three parallel bands trending from 
upper left to lower right as the specimen length is 
decreased. The upper band corresponds to speci- 
mens with the greatest cross-sectional area, and the 
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Figure 9 Results for Val d'Illiez sandstone. 
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lower to those with the least. Of particular interest 
is that when the beam length is reduced suf- 
ficiently for unstable fractures to be produced, 
points representing these specimens fall con- 
sistently and exclusively outside the stability 
boundary predicted by the theory. 

Inspection of the graph indicates that it should 
also be possible to cross the instability boundary 
in the other direction (i.e. in testing very long 
specimens), but calculation showed that specimens 

of more than a metre long would have been re- 
quired, and this dimension exceeded the maximum 
dimension of any of our pieces of raw material. 
The conclusion drawn from these experiments 
was, therefore, that the stability criterion was per- 
fectly obeyed within the limits examined. 

3. 1.2. Variation of  notch geometry 
The next series of experiments was aimed at 
invest igat ing the in f luence  o f  n o t c h  severity  and 

Figure 11 Machine stiffness as a 
function of  load. 
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Figure 12 Notch-sensitivity of different rocks. 

geometry, using specimens of Carrara marble. In 
preliminary experiments, the variation of failure 
load with notch depth had been briefly investi- 
gated for straight notched specimens. Fig. 12 
shows this variation: the degree of concavity of 
any curve is a measure of the notch-sensitivity of 
the material (deviation from the linear relation: 

failure load proportional to fraction of cross- 
sectional area remaining). It is worth noting that 
Solnhofen limestone clearly shows a greater degree 
of notch sensitivity than the other rocks, in com- 
plete agreement with its measured fracture energy, 
which is markedly less than the other rocks (see 
Section 3.3). 

Altering the depth and shape of notch, there- 
fore, forms a convenient method of changing the 
failure load and hence the stored elastic energy at 
failure. Specimens of constant dimensions 70 mm 
x 3 6 m m x  24ram were prepared, with either 
straight notches of various depths, or variants of 
the "triangular bridge" type. The results were 
again reduced to dimensionless form, and are 
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shown in Fig. 6. In making the calculations, it was 
necessary to introduce a factor 2finto the denomi- 
nator of each group, to allow for the fact that the 
area of potential fracture surface alters with the 
form of the notch, f has the value 1 for an un- 
notched beam, and 0 for the case where the notch 
cuts the beam completely in two. Again, in- 
spection of Fig. 6 shows that the stability criterion 
is well obeyed, with only one exception. 

3. 1.3. Validity of  the criterion of different 
rocks 

The next series of tests was made to investigate 
whether the type of rock has any influence. Here, 
the main variable was the fracture energy, al- 
though the stiffness also varies from rock to rock, 
but to a lesser extent. 

Figs. 7 to 10 show results for four rock types. 
All the tests were made on beams of 36mm x 
25ram cross-section except for the Solnhofen 
limestone where both 36 mm x 25 mm and 25 mm 
x 16ram sections were used. To obtain inter- 
sections with the stability boundary, some tests 
were made while varying the beam length with 
constant cross-sectional dimensions and notch, 
and some tests were made with constant beam 
length but with notches of differing severity. As 
we have seen above, the former procedure gives a 
trend from upper left to lower right, while the 
latter produces the opposite tendency on the 
dimensionless plot. 

The results for the granite call for no comment 
except to note one unstable result on the wrong 
side of the boundary. The marble and sandstone 
results are well behaved also, and are very similar 
to the granite, but the results for Solnhofen lime- 
stone are distinctly different, for although the 
tests on specimens with varying notch depth gave a 
good traverse of the stability boundary, the tests 
with the standard notch form and beam dimen- 
sions proved to be nearly all unstable. Of all these 
tests, only two semi-stable results were obtained 
for a pair of tests under similar conditions and pre- 
dicted to lie in the stable zone. A further group of 
tests was therefore undertaken, using thinner 
beams (25mm x 16mm) since it had been ob- 
served that, with the tests described in Section 
3.1.1, on Lasa marble, thinner beams tended to 
give more stable results (see Fig. 5). These supple- 
mentary results are also shown in Fig. 10, but, as is 
seen, no more success was achieved in obtaining 
stability. 



Upon completion of  these tests, it was decided 
that the stability criterion had been sufficiently 
examined, since no general exception had been 
found for any of  the parameters tested, and only 
a few individual tests had been found to fall con- 
trary to prediction. 

The severity of  the examination perhaps leaves 
a little to be desired, but this is a consequence of  
the nature of  the experiment; the transition from 
stable to unstable behaviour is not  sharp, and it is 
extremely difficult experimentally in borderline 
cases to decide whether a fracture is to be regarded 
as stable or unstable. In any case, the value of  the 
criterion is to be seen not as a means for approach- 
ing ever closer to the stability boundary, but to 
enable one to stay well away from it, in conditions 
which will give stable fractures in spite of  minor 
experimental variations. 

3.2. Effects of specimen size on fracture 
energy 

The existence of  a "size effect" on the fracture 
energy of  rocks may be expected intuitively by 
noting that the fracture energies of  most rocks are 
about two orders of  magnitude greater than those 
of  single crystals of  the minerals from which 
they are formed [10],  a phenomenon which is 
supposed to stem from the polycrystalline nature 
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o f  the rocks, causing irregular and sometimes 
multiple fracture paths. The effects o f  irregularity 
have been estimated by Hoagland et al. [18],  who 
have shown that the true fracture area may be 
more than an order o f  magnitude greater than the 
apparent area, with consequent direct influence 
on the fracture energy. In addition, if multiple 
(parallel) fracture occurs, if microcracks are pro- 
duced in the region of  the crack tip which do not 
form part o f  the final fracture surface, or if 
frictional losses occur in separating interlocking 
groups of  crystals, the fracture energy will be even 
further increased. 

As the specimen size is decreased, however, 
these effects should become less important. 
Ultimately, of  course, as the specimen cross- 
sectional area reduces to less than that of  a single 
grain, one should be able to measure a fracture 
energy no greater than that for cleavage of  the 
single crystal. 

With this idea in mind, therefore, a series of  
tests was made on Bohus granite and on Lasa 
marble, varying the cross-sectional area from 
nearly 3000ram 2 down to as little as could be 
achieved with the specimen preparation techniques 
at our disposal. This was 2 mm 2 (2 m m x  2 mm, 
half the section being removed by notching) and 
8ram 2 ( 4 m m  x 4 m m )  for the granite, which 
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Figure 13 Apparent fracture energy as a function of specimen cross-sectional area: Bohus granite. 
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Figure 14 Apparent fracture energy as a function of specimen cross-sectional area: Lasa marble. 

tended to break more easily during sawing. The 
cross-sections were maintained with the breadth 
either equal to or somewhat larger than the thick- 
ness, and the length was chosen to give an 
optimum chance of  stability, within the dimen- 
sions available from the raw material. 

The results obtained are shown in Figs. 13 and 
14. In both cases, there seems to be a distinct 
downward trend for small specimens. In the case 

TABLE I Collected fracture energies for rocks 

Rock type G (J m-2 ) Standard Number of 
deviation tests 

Marble 82 16 79 
Lasa 

Marble 71 13 9 
Carrara 

Sandstone 94 12 23 
Alpnach 

Sandstone 98 15.0 15 
Val d'IUiez 

Granite 116 26 57 
Bohus 

Granite 193 30 19 
Midville 

Limestone 24 2 4 
Solnhofen 
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of the marble, it is noticeable in the region of  
2 0 m m  2, and for the granite, in the region of  
10 mm 2 . In both of  these rocks, the grain size is of  

the order of  2 m m  although the granite has a 
broader distribution of  grain size. Fracture in a 
specimen of  20ram 2 thus involves a half-dozen 
or so grains. It is quite reasonable, therefore, that 
at this size there should be a distinct trend from 
the properties of  the mass towards those of  the 
single crystal. From the point o f  view of  the 
present work, however, the most important point 
is that there appears to be no size effect in the 
range 200 to 1000 mm 2 , where most of  the testing 
of  the fracture criterion has been carried out. We 
are therefore confident that the values of  fracture 
energy measured in the main series of  experiments 
are representative of  the rock in bulk. 

3.3. The absolute values of the fracture 
energy 

The values o f  fracture energy obtained from all 
our tests are given in Table I. It will be seen that 
the values vary quite widely, from somewhat more 
than 2 0 J m  -2 for Solnhofen limestone to nearly 
200 J m-2 for the Midville granite. These values do 
not appear to be related to the compressive 
strength o f  these rocks, but there is a rough cor- 
relation with the grain size. The Mi6ville granite is 



quite coarse-grained, having individual crystals up 

to several millimetres across, while the limestone is 

extremely fine-grained, with grains only rarely 
exceeding 100/.tm; between, with intermediate 

grain sizes lie the Bohus granite, the sandstones 

and marbles, although it should be noted that both 
the marbles are somewhat coarser grained than the 
sandstones. 

4. Conclusions 
The purpose of this report has been to present a 
simple and straightforward means for determining 

under what conditions it will be possible to obtain 
valid values of the fracture energy from a given 

material in a given machine using the normal three 
point bend test on a notched beam. The analysis 

has been presented as straight forwardly as possible, 
the main purpose being not  to exactly determine 

the stability boundary, but to provide a simple 
indication which will help in designing experi- 

ments which are well within the stable region. 
The experimental results reported confirm the 

predictions of the criterion very well, and show 
how in a typical testing machine it is possible to 

obtain either valid or invalid measures of the 

fracture energy by relatively small changes in the 

specimen dimension. 

References 
1. R. L. BERTOLETTI, J. Amer. Ceram. Soe. 57 

(1974) 300. 
2. G. P. MARHSALL, J. G. WILLIAMS and C. E. 

TURNER,,/. Mater. Sci. 8 (1973) 919. 
3. H. G. TATTERSALL and G. TAPPIN, ibm 1 (1966) 

296. 
4. R.W. DAVIDGE and G. TAPPIN, ibicl 3 (1968) 165. 
5. J. NAKAYAMA, J. Amer. Ceram. Soc. 48 (1965) 

583. 
6. W. F. BROWN and Jo E. SRAWLEY, ASTM special 

technical publication No. 410, ASTM Philadelphia 
(1966) p. 9. 

7. G. C. SIH, "Handbook of stress intensity factors", 
(Institute of Fracture and Solid Mechanics, Lehigh 
University, Bethlehem. Pa., 1973). 

8. R. G. HOAGLAND, G. T. HAHN, A. T. ROSEN- 
FIELD, R. SIMONS and G. D. NICHOLSON, 
Battelle research report, Contract HO 210006 
January 1972). 

9. R. G. HOAGLAND, G. T. HAHN, and A. R. 
ROSENFIELD, Rock Mechanics 5 (1973) 77. 

10. J.J. GILMAN, J. AppL Phys. 31 (1960) 2208. 
11. H. BERGKVIST, to be published. 

Received 11 May and accepted 2 June 1976. 

289 


